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  Zero-state response assumes that the system is in “rest” state, i.e. all 
internal system variables are zero. 

  Deriving and understanding zero-state response depends on knowing the 
impulse response h(t) to a system. 

  Any input x(t) can be broken into many narrow rectangular pulses.  
Each pulse produces a system response. 

The importance of Impulse Response h(t) 

L2.3 p164 

  Since the system is linear and time 
invariant, the system response to x(t) is 
the sum of its responses to all the 
impulse components. 

  h(t) is the system response to the 
rectangular pulse at t=0 as the pulse 
width approaches zero. 
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How to determine the unit impulse response h(t)? (1) 

  Given that a system is specified by the following differential equation, determine its 
unit impulse response h(t). 

  Remember the general system equation: 

  It can be shown that the impulse response h(t) is given by: 
                                                                              .. (4.3.1) 

  
       where u(t) is the unit step function, and yn(t) is a linear combination of the 

characteristic modes of the system. 
 

2

2 3 2 ( )d y dy dxy t
dt dt dt

+ + =

( ) ( ) ( ) ( )Q D y t P D x t=

( ) [ ( ) ( )] ( )nh t P D y t u t=

1 2
1 2( ) ........ Ntt t

n Ny t c e c e c eλλ λ= + + +

L2.3 p165 

Lecture 4 Slide 4 PYKC 24-Jan-11 E2.5 Signals & Linear Systems 

How to determine the unit impulse response h(t)? (2) 

  The constants ci are determined by the following initial conditions: 
 

  Note yn
(k)(0) is the kth derivative of yn(t) at t = 0. 

  The above is true if M, the order of P(D), is less than N, the order of Q(D) (which is 
generally the case for most stable systems). 

L2.3 p165 

yn (0) = yn (0) = yn (0) = .... = yn
(N−2)(0) = 0, yn

(N−1)(0) =1.
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The Example (1) 

  Determine the impulse response for the system: 

  This is a second-order system (i.e. N=2, M=1) and the characteristic polynomial is: 

  The characteristic roots are λ = -1 and λ = -2.  

  Therefore : 

  Differentiating this equation yields: 

  The initial conditions are 

L2.3 p167 
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The Example (2) 

  Setting t = 0 and substituting the initial conditions yield: 

  The solution of these equations are: 

  Therefore we obtain 

  Remember that h(t) is given by: 
 
            and P(D) = D in this case. 
  Therefore 

( ) [ ( ) ( )] ( )nh t P D y t u t=

L2.3 p168 
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Zero-state Response (1) 

  We now consider how to determine the system response 
y(t) to an input x(t) when system is in zero state. 

  Define a pulse p(t) of unit height and width Δτ at t=0: 
  Input x(t) can be represented as sum of narrow 

rectangular pulses. 
  The pulse at t = nΔτ has a height x(t) = x(nΔτ). 
  This can be expressed as  x(nΔτ) p(t - nΔτ). 
  Therefore x(t) is the sum of all [x(nΔτ)/ Δτ]. such pulses, 

i.e. 

L2.4 p169 
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Zero-state Response (1) 

  The term  [x(nΔτ)/ Δτ]p(t- nΔτ)   represents a pulse p(t - nΔτ) with height 
x(nΔτ) 

  As Δτ → 0, height of strip → ∞, but area remain x(nΔτ), and 

L2.4 p169 
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Zero-state Response (2) 

L2.4 p169 
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Zero-state Response (3) 

L2.4 p171 
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Zero-state Response (4) 

  Therefore, 

  Knowing h(t), we can determine the response y(t) to any input x(t). 
  Observe the all-pervasive nature of the system’s characteristic modes, which 

determines the impulse response of the system. 

LTI System 
h(t) 

( ) ( )* ( )y t x t h t=

L2.4 p171 
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The Convolution Integral 

  The derived integral equation occurs frequently in physical sciences, engineering 
and mathematics.    

  It is given the name: the convolution integral. 
  The convolution integral of two functions x1(t) and x2(t) is denoted symbolically as 

  And is defined as 

  Note that the convolution operator is linear, i.e. it obeys the principle of 
superposition. 

L2.4 p171 
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Properties of Convolution (1) 

  COMMUTATIVE PROPERTY (order of operands does not matter): 

  ASSOCIATIVE PROPERTY (order of operator does not matter): 

  DISTRIBUTIVE PROPERTY: 

L2.4-1 p172 
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  SHIFT PROPERTY: 
     If 

 
         then 
 
          Also 
 
  IMPULSE PROPERTY: 

•  Convolution of a function x(t) with a unit impulse results in the function x(t). 

Properties of Convolution (2) 

L2.4-1 p172 
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  WIDTH PROPERTY: 
     Duration of x1(t)   =   T1,     and duration of x2(t)   =   T2,  

         then duration of      x1(t) *x2(t)   =    T1 + T2,  
 
           

  CAUSALITY PROPERTY: 
 If both system’s impulse response h(t) and the input x(t) are causal, then 

Properties of Convolution (3) 

L2.4-1 p173 
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  For a LTI system with the unit impulse response                        , determine the 
response y(t) for the input 

  Both h(t) and x(t) are causal, therefore 

  Now,  
  And 
  Therefore 

  Remember that this integration is with respect to τ (and not t),        can be pulled 
outside the integral: 

  Therefore 

Example (1) 
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Example (2) 

* 
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  Convolution has been introduced last year in the communication course.  We will go 
deeper into convolution and its physical implication in more details in this lecture. 

  Zero-state response (as determined through the convolution operation) is very 
important, and is intimately related to the zero-input response and the characteristic 
modes of the system. 

  All these are relevant to the 2nd year control course. 
  You will also come across convolution again in your 2nd year Communications 

course and third year DSP course. 

Relating this lecture to other courses 


